

"Marco Legal del Sub-Sector Eléctrico Parte I

Contenido

- Introducción
- Sistemas de suministro de energía eléctrica (Contexto) tecnológico y económico)
- Marco legal del sub-sector eléctrico (Contexto regulatorio)
 - Conceptos básicos
 - Antecedentes del sub-sector eléctrico
 - Ley General de la Industria Eléctrica (D.L. N°404-2013)
 - Marco Legal Energía Renovable



Introducción

"Puede afirmarse que la calidad de vida y el propio funcionamiento de las sociedades desarrolladas depende de una forma significativa de la disponibilidad de la energía eléctrica. La electricidad se ha convertido en estas sociedades en **un bien de** consumo esencial."

Fuente: A. Gómez Expósito et.al., *Análisis y Operación de Sistemas de Energía Eléctrica*, McGraw-Hill, España, 2002.

Fuente: J.D. Glover, M: S. Sarma, T.J. Overbye, *Power System Analysis and Design*, CENGAGE Learning, 5th Ed., USA, Jan. 2011.

Introducción

Un bien de consumo con características muy particulares

No almacenable

a gran escala

• Equilibrio generación y demanda

Leyes físicas...

Configuración

Planificación

Operación

Organización

Gestión

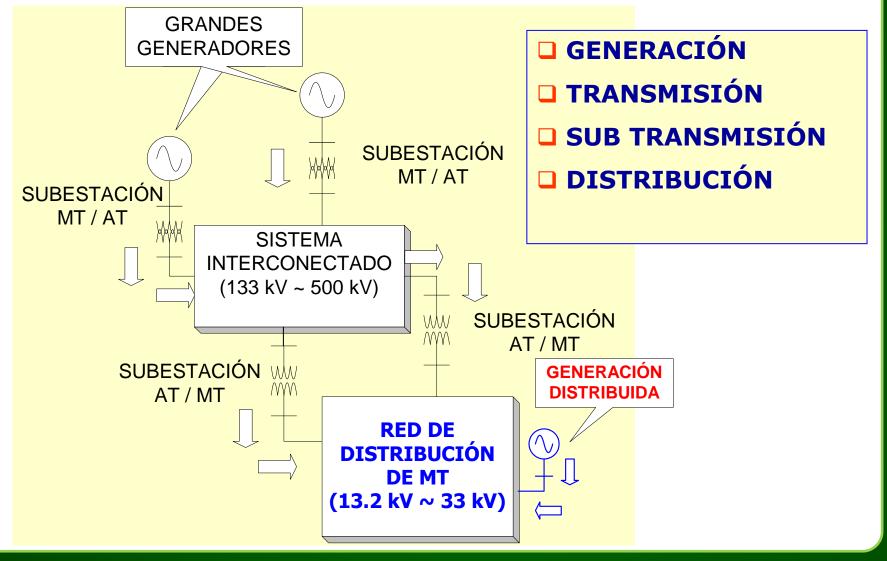
Puntos de vista complementarios:

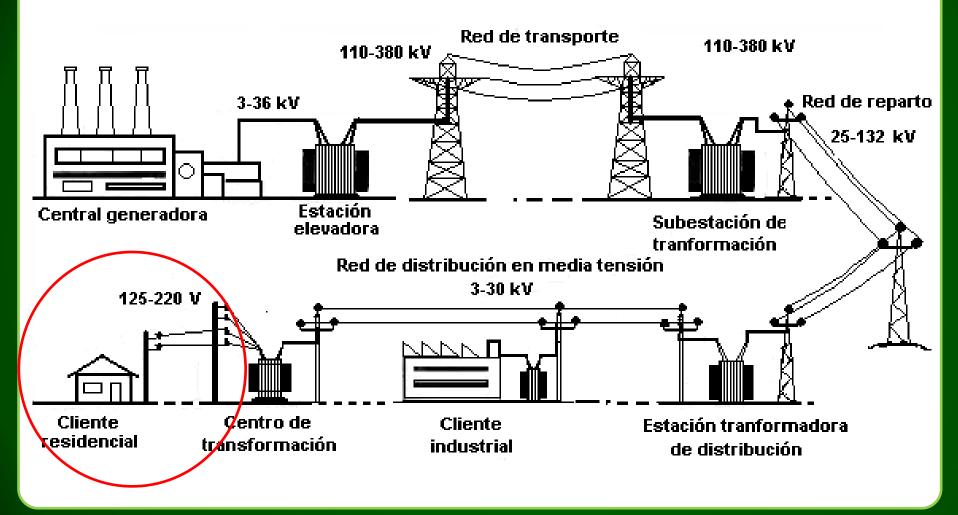
- > Tecnológico
- Económico
- **≻**Legal (Regulatorio)

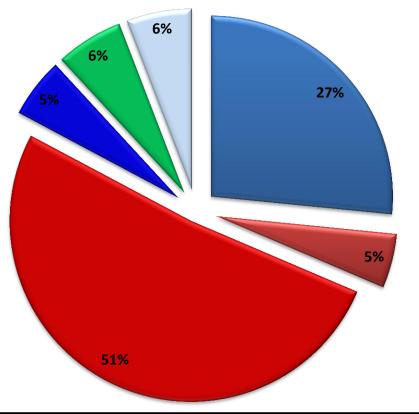
Sistemas de suministro de energía eléctrica (sistema eléctrico de potencia)

Mercados Eléctricos

Fuente: A. Gómez Expósito et.al., Análisis y Operación de Sistemas de Energía Eléctrica, McGraw-Hill, España, 2002.







Capacidad Instalada de Generación del SIN/ENEE por tipo de fuentes. (Año 2013)

■ HIDRÁULICA ESTATAL

■ TÉRMICA ESTATAL

■ TÉRMICA PRIVADA

■ HIDRÁULICA PRIVADA

■ BIOMASA PRIVADA

■ EÓLICA PRIVADA

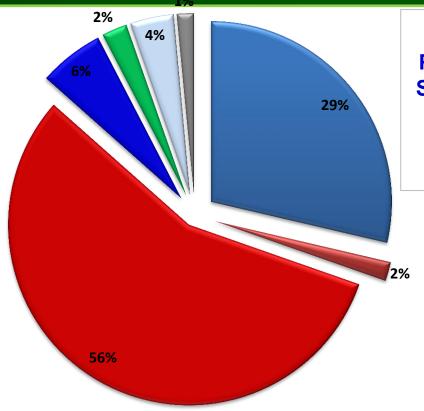
Fuente de Generación	MW Instalado	%	MW Disp (diciembre 2013
HIDRÁULICA ESTATAL	464,4	27%	344,8
TÉRMICA ESTATAL	84,6	5%	51,9
<mark>TÉRMICA PRIVADA</mark>	897,8	51%	760
HIDRÁULICA PRIVADA	93,6	5%	65,6
BIOMASA PRIVADA	105,5	6%	0,5
EÓLICA PRIVADA	102	6%	48
TOTAL	1747,9	100%	1270,8

Energía Renovable: 44%

Térmica: 56%

Fuente: Boletín Estadístico

ENEE Año 2013



Producción de Electricidad en el Sistema Interconectado Nacional (SIN) por tipo de fuentes. (Año 2013)

- **HIDRÁULICA ESTATAL**
- **TÉRMICA ESTATAL**
- **TÉRMICA PRIVADA**
- HIDRÁULICA PRIVADA
- BIOMASA PRIVADA
- **EÓLICA PRIVADA**
- **MERCADO REGIONAL**

Fuente de Generación	GWh/año	%
HIDRÁULICA ESTATAL	2274,4	29%
TÉRMICA ESTATAL	135,8	2%
TÉRMICA PRIVADA	4462,5	56%
HIDRÁULICA PRIVADA	464	6%
BIOMASA PRIVADA	179,7	2%
EÓLICA PRIVADA	310,2	4%
MERCADO REGIONAL	114,6	1%
TOTAL	7941,2	100%

Energía Renovable: 41%

Térmica: 58%

Importación (MER): 1%

Fuente: Boletín Estadístico

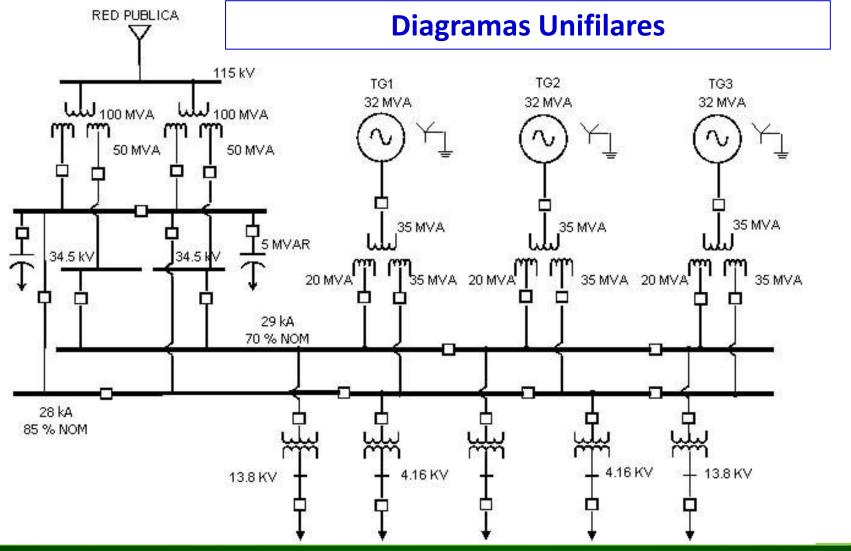
ENEE Año 2013

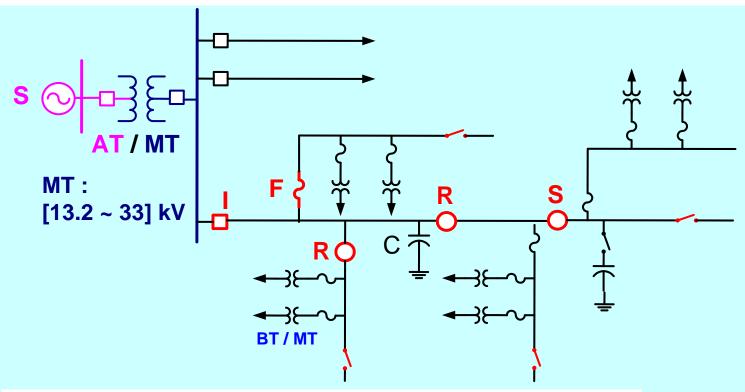
Sistema	Algunas tensiones típicas			
Generación	13.2 kV, 20 kV			
Transmisión	138 kV, 230 kV, 345 kV, 500 kV, 750 kV			
Subtransmisión	34.5 kV, 69, kV, 115 kV, 138 kV			
Distribución primaria	4.16 kV, 13.2 kV, 34.5 kV			
Distribución secundaria	120/240 V, 120/208 V, 240/480 V			

CLASIFICACIÓN:

- □ BT (LV: Low Voltage) < 1 kV
- □ MT (MV: Medium Voltage) 1 kV ~ 69 kV
- □ AT (HV: High Voltage) 69 kV ~ 230 kV
- □ EAT (EHV: Extra High Voltage) 345 kV ~ 765 kV
- □ UAT (*UHV* : *Ultra High Voltage*) > 765 kV

Ref: IEEE Std 141-1993, IEEE Recommended Practice for Electric Power Distribution for Industrial Plants, published by IEEE, 1994.





Dispositivos de protección (principio de sobrecorriente):

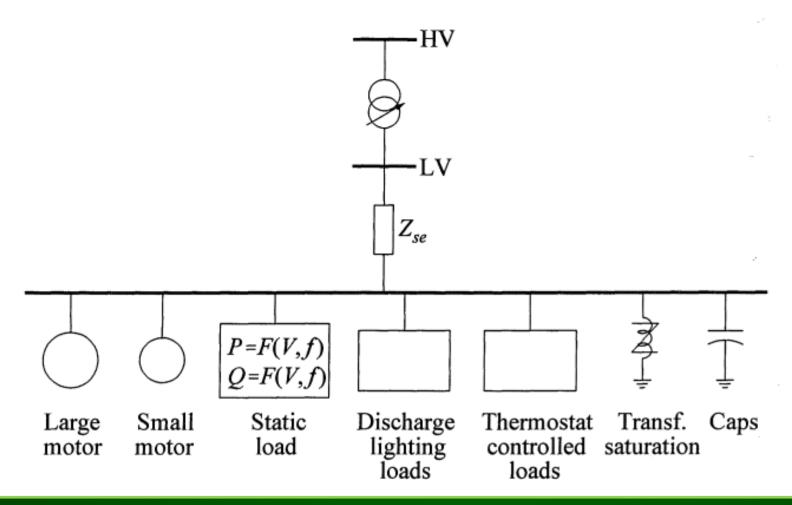
I: Interruptor

R: Reconectador

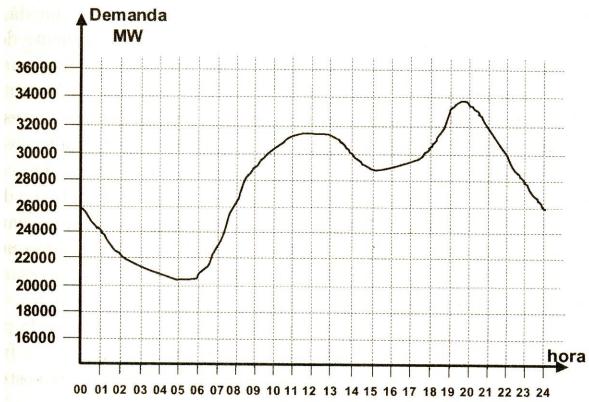
F: Fusible

S: Seccionalizador

Diagrama unifilar de un sistema de distribución con su sistema de protección



Composición de modelos estáticos y dinámicos de carga



Curva de demanda

- Demanda pico o máxima
- Demanda modulable o semi valle
- Demanda base o valle

DEMANDA MAXIMA DEL SISTEMA E.N.E.E.

PERIODO 2013 - 2014

MES	MW	FECHA	HORA	MW	FECHA	HORA	
	2013			2014			
ENERO	1,233	miércoles16/01	18:30 pm	1,293	miércoles 29/01	18:44 pm	
FEBRERO	1,304	martes 26/02	18:42 pm	1,334	miércoles 26/02	18:46 pm	
MARZO	1,335	viernes 22/03	11:45: a.m.	1,367	lunes 31/03	18:54 pm	
ABRIL	1336.0	martes 02/04	19:08 pm	1,374	martes 1/04	19:14 p.m	
MAYO	1310.0	viernes/10/05	11:32 a.m.	1,383	jueves 8/05	18:56 p.m.	
JUNIO	1241.1	miercoles/05/06	11:39 a.m.	1,317	viernes 13/06	11:36 p.m.	
JULIO	1239.2	jueves/25/07	19:18 p.m.	1330	miercoles 9/07	19:40 p.m.	
AGOSTO	1254.0	martes/13/08	11:39 a.m.				
SEPTIEMBRE	1,332.0	miercoles/25/09	18:30: p.m.				
OCTUBRE	1,332.8	miercoles/23/10	18:14 pm				
NOVIEMBRE	1,299.8	martes/26/11	18:21 pm				
DICIEMBRE	1,250.1	viernes/6/12	18:08 pm				
D. MAXIMA	1,336	lunes 07/05	18:43 p.m.	1,383	jueves 8/05	18:56 p.m.	

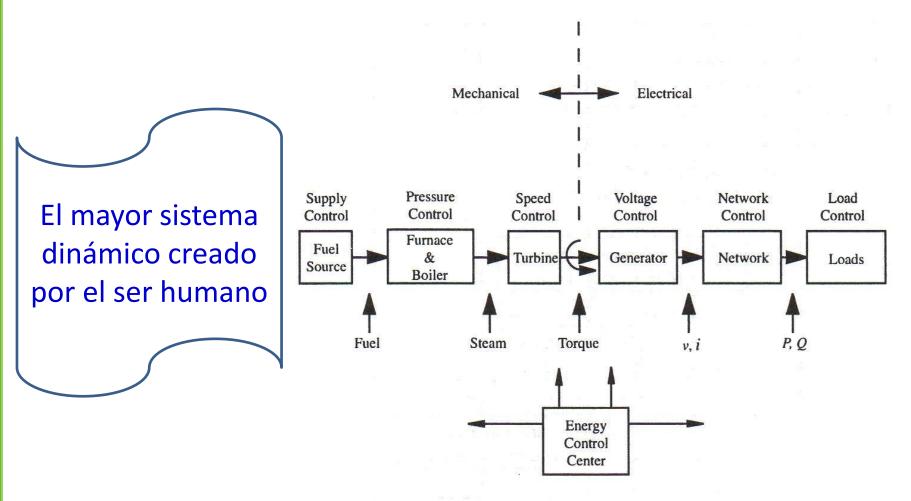
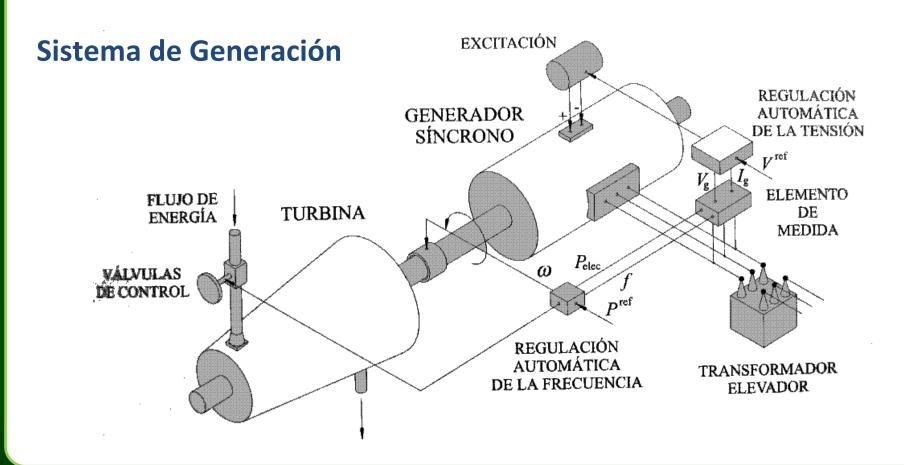


Figure 1.1: System dynamic structure



Subsistemas de un SEP y sus controles asociados

MERCADOS ELECTRICOS LIBERALIZADOS Y RESTRICCIONES AMBIENTALES

EXPANSION LIMITADA DEL SISTEMA ELECTRICO

CONDICIONES EXTREMAS DE **OPERACION**

PROBLEMAS DE SEGURIDAD **DEL SISTEMA**

ANALISIS DE SEGURIDAD DEL SISTEMA

- cambios de condiciones de operación
- Incertidumbre de condiciones futuras

Límite térmico **ESTATIC** Límite de tensión

Angulo del rotor

Tensión

Frecuencia

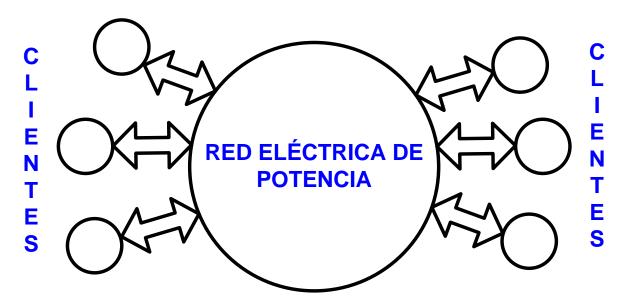
DINAMICA

(Estabilidad)

Entre los estudios para el análisis de funcionamiento de sistemas eléctricos de potencia se pueden mencionar:

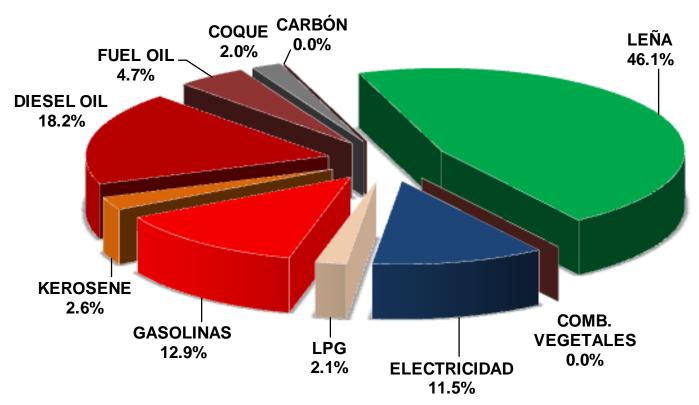
- ✓ Análisis de flujo de carga (flujo CA, flujo DC, trifásico, etc.)
- ✓ Análisis de corto circuito (simétrico, asimétrico)
- ✓ Análisis de estabilidad (transitoria, dinámica, frecuencia, tensión)
- ✓ Despacho económico de carga (térmico, hidrotérmico, pre-despacho)
- ✓ Análisis de transitorios electromagnéticos (TEM)
- ✓ Estudios de protección
- ✓ Análisis de armónicos
- Estudios de cargas
- ✓ Análisis de confiabilidad (Reliability)....

Estudios de funcionamiento de un SEP



Visión moderna de un SEP

En términos económicos, existen diferentes agentes, por ejemplo los clientes que pueden ser consumidores o productores, el objetivo de la red eléctrica ya no es sólo vender energía, sino que puede vender capacidad de transporte, facilitar las transacciones entre clientes del sistema gestionadas por agentes comercializadores de energía.



Del Balance Energético Nacional

Fuente: Balance Energético 2009-2010, DGE/SERNA

CUADRO 35 CENTROAMÉRICA: INDICADORES DE LA INDUSTRIA PETROLERA, 1980-2012

Índice	Centroamérica	Costa Rica	El Salvador	Guatemala	Honduras	Nicaragua	Panamá
2012							
Relación factura/PIB (%)	7,28%	4,82%	7,87%	5,89%	12,07%	11,70%	8,08%
Factura per cápita	231,1	340,6	223,1	148,1	217,2	154,5	584,8
Consumo per cápita	2,47	3,72	2,15	1,67	2,38	1,71	5,94
Intensidad petrolera	0,78	0,53	0,76	0,67	1,32	1,29	0,82
Emisiones per cápita	0,98	1,45	0,82	0,65	0,98	0,70	2,36
Intensidad de emisiones	307,8	205,9	288,4	259,1	546,3	530,0	325,6

Fuente: CEPAL, sobre la base de cifras oficiales.

Notas: Factura per cápita en dólares de 2000 por habitante.

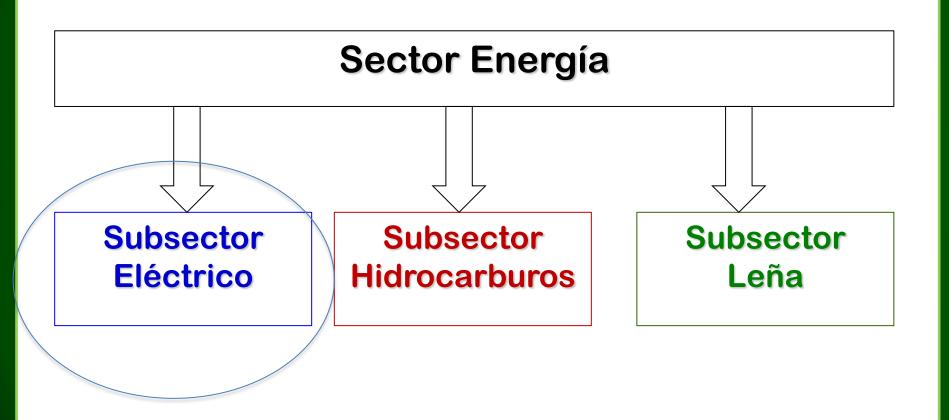
Consumo per cápita en barriles de derivados de petróleo por habitante.

Intensidad petrolera en barriles de derivados de petróleo por miles de dólares de 2000 del PIB.

Emisiones per cápita en toneladas de CO₂ por habitante, referentes al consumo de hidrocarburos.

Intensidad de emisiones en toneladas de CO₂ por millón de dólares de 2000 del PIB, referentes al consumo de hidrocarburos.

Fuente: CENTROAMÉRICA: ESTADÍSTICAS DE HIDROCARBUROS, 2012, CEPAL, México, D. F., Noviembre de 2013.



Sector Energético de Honduras

- ➤ Bajo un ambiente más liberalizado (desregulado) y con la reestructuración del sub-sector eléctrico se espera un incremento de las transacciones comerciales en Honduras.
- La gestión económica de un sistema eléctrico es una tarea sumamente compleja que comprende diversas actividades y aspectos tales como: financieros (inversiones), tarifarios, sociales, empresariales, ambientales, planificación de inversiones y operación de sistema eléctrico.

Las decisiones de expansión y operación de un SEP consideran la eficiencia económica y la minimización de los costos para el suministro de energía eléctrica al consumidor final y con un nivel adecuado de calidad.

Tareas:

Programación y supervisión de la generación y la transmisión en el largo plazo, mediano, corto plazo y tiempo real.

La organización del sub-sector eléctrico...

- ¿Cómo se organiza y funciona el mercado eléctrico?
- ¿Quién se encarga de planificar, operar y mantener los sistemas de energía eléctrica?
- ¿Quién toma en cada caso las decisiones y en base a qué criterios?

"La organización del sector eléctrico ha ido evolucionando con el tiempo, en gran medida adaptandose a las condiciones del desarrollo tecnológico, aunque también dependiendo de las teorías económicas predominantes en cada momento y lugar"

Fuente: A. Gómez Expósito et.al., Análisis y Operación de Sistemas de Energía Eléctrica, McGraw-Hill, España, 2002.

Sistemas de suministro de energía eléctrica (Contexto regulatorio)

Referencias

- 1. John J. Grainger, William D. Stevenson Jr., *Análisis de Sistemas de Potencia*, McGraw-Hill, México, 1996.
- 2. H. Saadat, *Power System Analysis*, McGraw-Hill, International Edition, 2nd Ed., 2004.
- 3. J.D. Glover, M: S. Sarma, T.J. Overbye, *Power System Analysis and Design*, CENGAGE Learning, 5th Ed., USA, Jan. 2011.
- 4. A. Gómez Expósito et.al., *Análisis y Operación de Sistemas de Energía Eléctrica*, McGraw-Hill, España, 2002.
- 5. IEEE Std 399-1997, *IEEE Recommended Practice for Industrial and Commercial Power Systems Analysis*, published by IEEE, 1998.
- 6. Westinghouse Electric Corporation, *Electrical Transmission and Distribution Reference Book*, 4th ed., 1964.
- 7. Peter W. Sauer, M. A. Pai, *Power System Dynamics and Stability*, Edition, illustrated. Publisher, Prentice Hall, 1998
- 8. Apuntes Curso de Posgrado: Despacho económico: Precios de la energía, servicios complementarios y transporte Instituto de Energía Eléctrica U.N.S.J.
- 9. Apuntes Curso de Posgrado: Mercados Eléctricos- Instituto de Energía Eléctrica U.N.S.J.

